Programming cells to do amazing stuff: The Digest’s 2018 Multi-Slide Guide to Asimov

0
1566

Asimov has spun out of MIT aimed at detecting and responding to  customer needs in applying biocircuit design to real-world opportunities.

“It is literally a programming language for bacteria,” says Christopher Voigt, an MIT professor of biological engineering. “You use a text-based language, just like you’re programming a computer. Then you take that text and you compile it and it turns it into a DNA sequence that you put into the cell, and the circuit runs inside the cell.”

Asimov just picked up a $4.7 million seed round investment from Marc Andreessen’s’ venture firm. You might remember that Marc was a hot-shot spin-out CEO himself a generation ago, developing something he called a web browser, which, um, did pretty well.

Inspired by the trajectory of electronic design automation — they’re making the engineering of biology follow the same workflow of engineering a computer chip. With Asimov, a biological circuit design starts in the very same way that a computer chip design would start: by programming it in Verilog, the language used to design electronic circuits for decades.

The Asimov team assembled this illuminating overview on the progress and promise of the technology.