In Pennsylvania, a newly discovered protein could help detect, target and collect from the environment the rare-earth metals used in smartphones. Two new studies by researchers at Penn State describe the protein, which is 100 million times better at binding to lanthanides — the rare-earth metals used in smartphones and other technologies — than to other metals like calcium.
“Recently, there has been a lot of interest in increasing accessibility of rare-earth elements like lanthanides, which are used in the screens and electronics of smartphones, batteries of hybrid cars, lasers, and other technologies,” said Joseph Cotruvo Jr., assistant professor and Louis Martarano Career Development Professor of Chemistry at Penn State and an author of both studies. “Because the physical properties of rare-earth elements are so similar, it can be difficult to target and collect one in particular. Understanding how this protein binds lanthanides with such incredibly high selectivity could reveal ways to detect and target these important metals.”
The research team discovered the protein, which they named lanmodulin, within the bacterium Methylobacterium extorquens, which grows on plant leaves and in soil and plays an important role in how carbon moves through the environment. The bacteria require lanthanides for the proper function of some of their enzymes, including one that helps the bacteria to process carbon, which is required for its growth.