Lead researcher Filipe Natalio, Ph.D., tells Inverse that they grew cotton to incorporate fluorescent molecules into its fibers by using glucose derivatives as a “molecular glue” between the outerlayer of cotton fibers and fluorescent material. They used a similar approach to attach magnetic molecules to cellulose fibers. Neither approach required genetic engineering.
And, unlike other “smart materials,” the cotton does not gain its unique properties from novel coatings that become less functional with time and wear and tear.
“Fluorescence and magnetic properties were our proof-of-principle—the applications are now open,” Natalio says. “Current approaches for smart textiles use coatings. In our approach, the functional molecule will be weaved together with other building blocks, like glucose, into functional threads.” Using this approach, “smart plants” could be grown simply by adding functional molecules to the plant’s water supply, he adds.