The research sheds light on atomic rearrangements in catalyst surface structures during reaction and presents a methodology for predicting and designing actual active sites in operando conditions. The findings were published in Nature Catalysis and selected as the cover article.
Electrochemical reduction of CO₂ has emerged as a pivotal technology in achieving carbon neutrality, enabling the transformation of greenhouse gas CO₂ into clean and valuable chemical feedstocks. Copper (Cu)-based catalysts are particularly notable for producing high-value multi-carbon compounds such as ethylene (C₂H₄) and ethanol (C₂H₅OH).