Cracking under pressure – 3D printed cement biomimcs mantis shrimp

0
133

In Indiana, Purdue University researchers have 3D-printed cement paste, a key ingredient of the concrete and mortar used to build various elements of infrastructure, that gets tougher under pressure like the shells of arthropods such as lobsters and beetles. The technique could eventually contribute to more resilient structures during natural disasters.

“Nature has to deal with weaknesses to survive, so we are using the ‘built-in’ weaknesses of cement-based materials to increase their toughness,” said Jan Olek, a professor in Purdue’s Lyles School of Civil Engineering.

The team was initially inspired by the mantis shrimp, which conquers its prey with a “dactyl club” appendage that grows tougher on impact through twisting cracks that dissipate energy and prevent the club from falling apart.

The first-ever bioinspired 3D-printed cement paste element shows promise for making infrastructure more resilient to mechanical loads, like those that occur during natural disasters. The idea would be to use designs inspired by arthropod shells to control how damage spreads between the printed layers of a material, like trying to break a bunch of uncooked spaghetti noodles as opposed to a single noodle.